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ON THE ELASTODYNAMIC RESPONSE OF THICK
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The transient axisymmetric response of thick multilayered plates is considered from a
dynamic elasticity point of view. The analysis is based on an exact elasticity formulation
and analytical solution, via eigenfunction expansion, for a plate comprised of an arbitrary
number of perfectly bonded isotropic layers of arbitrarily differing thicknesses and material
properties. Results of numerical simulations based on the exact solution are presented for
a single layer plate, for sandwich plates and for bilaminates with a central ‘‘adhesive’’ layer.
In each case, frequency spectra and physical through the thickness depictions of selected
individual elastodynamic modes representative of the various branches of the spectrum are
computed and compared. A forcing function is formulated to simulate transverse impact
and results corresponding to both ‘‘long’’ and ‘‘short’’ duration normal impact of each
structure are presented in the form of physical depictions of the entire deformed
cross-section of the structure as a function of time. In addition, the degree of participation
of the various modes for the transient response is monitored by a scaled shade intensity
of the frequency spectrum plot. The dimensions of the impactor considered are on the order
of the overall thickness of the plate, and the responses are seen to capture the critical wave
behavior in the vicinity of the impactor.
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1. INTRODUCTION

The dynamics of layered media is of interest in a variety of settings, from geophysical
applications and semiconductor devices to composite engineering structures. The subject
of impact response is particularly germain to layered structures in that large local
interfacial stresses may cause delamination at these locations, compromising the
effectiveness and integrity of the overall structure. The study of the response of laminates
to transverse impact loading has thus been, and continues to be, of much interest.
Typically, the structure or medium is considered as either an infinite or semi-infinite
domain, or as a thin layered structure with implicit assumptions concerning the variation
of the response through the thickness. Both approaches have their place and may be
considered appropriate within certain ranges of length scales and load types peculiar to
the particular problem under consideration. In the present study, however, the problem
of impact of a finite dimensional multilayered plate is examined in the context of an exact,
albeit axisymmetric, elasticity solution which captures and demonstrates the contribution
of the through the thickness wave effects.
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The impact problem may generally be considered to consist of two parts, the first being
the modelling of the impact process and the second being the modelling of the laminate
response. Both are, of course, interdependent and must formally be considered
simultaneously. Generally, the impact process is simulated by relating the motion of the
plate to the motion of the impactor via a contact law. Commonly, the contact law is based
on the Hertzian assumption that the stresses and deformations close to the contact region
can be calculated at any instant as if the contact were static. With regard to the response
of layered plates, approximate thin plate models have commonly been employed such as
that due to Whitney and Pagano [1], which was originated by Yang et al. [2] who extended
the isotropic plate theory of Mindlin [3] to the case of heterogeneous plates. The literature
pertaining to elasticity solutions of such problems is less extensive. A comprehensive review
of the literature concerning impact of composites may be found in the papers by Abrate
[4–6]. A number of such works, grouped according to topic, are discussed below in
chronological order.

We begin with the work of Sun and Lai [7] who, in 1974, compared the plate theory
of Whitney and Pagano [1] with the exact elasticity solution for transient wave propagation
in an anisotropic plate. They found that the plate solution agreed very well with the exact
solution except in the vicinity of load. In 1975, Sun and Chattopadhyay [8] examined the
response of anisotropic laminated plates under initial stress to impact of a mass. They used
the plate theory of Whitney and Pagano [1] to model the laminated plates and the Hertzian
contact law to model the impact forces. An approximate numerical scheme was employed
to solve the resulting non-linear integral equation of motion. In 1986, Koller [9]
investigated the elastic impact of spheres on sandwich plates. In that study, a special
sandwich plate theory was used which included bending of the facing sheets and transverse
shear of the core. Hertzian contact was assumed. A Laplace transform was carried out
on the equations of motion which were then solved in the transform space. As the resulting
solution was too cumbersome for an analytical inverse transformation, a power series
approximation was taken and a finite number of terms were then inversely transformed.
Although the results agreed qualitatively with experiment, the author concluded that

Figure 1. Multilayered elastic solid with co-ordinates and labels.
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Figure 2. Graphical depiction of the ‘‘impact force’’: (a) radial variation: shown for the case r0 =1·2 (k0 =2);
(b) temporal variation: shown for the case t0 =3·14 (v0 =1).

transverse waves, which were not modelled by the sandwich plate theory, were important
and should be included. In 1991, Christoforou and Swanson [10] used the approximate
equations of motion developed by Whitney and Pagano [1] to obtain an analytical solution
for impact response in composite plates. A closed form solution was obtained by
linearizing the equilibrium equation between the impactor and the plate and by assuming
a constant contact area. In 1993, Lee et al. [11] studied the response of a sandwich plate
impacted by a rigid ball using a sandwich theory which modelled the face sheets as separate
Mindlin plates with a core that transmits transverse shear as well as transverse normal
deformations. They used the finite element method to numerically solve the equations of
motion for the plate and impactor with a contact power law determined from static
indentation tests. In 1994, Prasad et al. [12] conducted experiments of low speed impact
on composite plates and compared their results with analysis using the plate theory by
Whitney and Pagano [1]. For impact, a constant contact zone was used with the Hertzian
contact law. The results of that study showed that the inclusion of transverse shear in the
plate theory was very important for correlating the analysis with experiment in the local
region of impact. We also note several other studies that have employed higher-order plate
theories for the study of laminated plates [13–15].

Studies of one-dimensional elastic wave propagation in periodically layered structures
have been conducted by Sun et al. [16], Li and Benaroya [17], and by Weaver and Pao
[18]. Norris and Wang [19] examined flexural waves in periodic plates using an asymptotic
approximation for the dispersion relation of flexural waves in an infinite periodic plate.



(a)

5

E, ν 1

(b)

(c)

5

0.1

0.1

0.8E, ν

Ef ν, f

E, ν

E, ν

Ec ν, c
0.4

0.4

0.2

5

. .   . . 42

Figure 3. Laminate configurations: (a) single layer (isotropic) plate; (b) sandwich plate; (c) bilaminate with
central ‘‘adhesive’’ layer.

In 1988, Bottega [20] extended the exact elasticity solution for the transient axisymmetric
response of an isotropic plate, via eigenfunction expansion, by Weaver and Pao [21], to
the case of multilayered plates. This solution gives the response to transient loading as an
expansion of the axisymmetric elastodynamic modes† for an elastic solid comprised of an
arbitrary number of isotropic layers as well as a procedure for evaluating the natural
frequencies of the structure. It was noted by the author [20] that the solution to specific
problems can be obtained numerically using the presented solution as an algorithm and
that the major computational effort would be in the evaluation of the natural frequencies.
In 1995, Lih and Mal [23] calculated the field response of laminated plates subjected to
a full cycle sine pulse with Gaussian spatial variation over the entire surface of the plate
using both an elasticity solution via Fourier transform, and using shear plate and classical
plate solutions. Surface motion at various multiples of the plate thickness away from the
center of the load, for various durations of the sine pulse, were computed and compared
and conclusions were drawn as to the adequacy of the shear plate model within ranges
of these parameters. In 1996, El-Raheb and Wagner [24] used an exact elasticity solution

† A condition for the orthogonality of the modes of a general class of multilayered solids was given by Bottega
[22]. The multilayered plates considered herein fall into that class.
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Figure 4. Frequency spectrum for isotropic plate.

similar to Bottega’s [20] to examine transient axisymmetric elastic waves in periodic layered
media.

In the present work, the exact solution by Bottega [20] is employed to investigate the
dynamic response of layered plates to impact loading. A mathematical representation of
an impact load is incorporated, which implicitly assumes a form of contact [25]. The
frequency spectrum and representative elastodynamic mode shapes are presented for
selected structures. In addition, the corresponding response to impact loading is presented
in the form of time histories of the deforming structure and reveals the local wave-like
behavior in the vicinity of the impactor for a specific contact area and a pair of impact
durations. This is first done for a single layer plate, as a benchmark. Corresponding results
for the case of sandwich structures and for the case of bilaminates with a central adhesive
layer are then presented, and are interpreted through and compared with the results for
the single layer plate as well as with each other. In each case, impact areas are considered
such that the impact diameter is of the order of the overall thickness of the layered plate.
In all cases, critical wave behavior is captured and is seen to occur locally in the vicinity
of the impactor. Such behavior has ramifications with regard to interfacial failure of the
structure (see, for example, references [26–28]).

2. ANALYTICAL SOLUTION

For this study, the eigenfunction based solution by Bottega [20] for the transient
axisymmetric response of a multilayered elastic solid of finite extent is employed. This
solution begins by solving the elasticity equations in a single layer. A multilayered structure
is considered by incorporating the general form of the solution for each individual layer.
Matching conditions imposed at the layer interfaces provide a general response of the
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multilayered solid, and boundary conditions imposed on the edges and exterior faces
provide a dispersion relation for the entire structure. Finally, the response to time
dependent loading is assumed as an expansion of the normal modes with time dependent
amplitudes and is expressed in the form of a Duhamel Integral. That solution is briefly
summarizd in this section. The reader is referred to reference [20] for a detailed
development of the solution.

Consider the N-layer circular plate of radius R depicted in Figure 1, where the
displacement field corresponding to each linearly elastic isotropic layer, u( j) (r, t)
( j=1, 2, . . . , N), must satisfy Navier’s equation which for the jth layer is of the form

(l( j) + m( j))9(9 · u( j) (r, t))+ m( j)92u( j) (r, t)= r( j) 1
2u( j) (r, t)

1t2 −F(r, t), on zj−1 E zE zj .

(1)

In equation (1), l( j), m( j), and r( j) correspond to the two Lamé constants and the mass
density for the jth layer, respectively, F(r, t) is the applied body force field, and t is the
time. In addition, r=(r, z) is the spatial co-ordinate vector where r is the radial
co-ordinate and z is the transverse co-ordinate, and 9 represents the gradient operator.

Figure 5. The first three ‘‘transverse–longitudinal’’ (‘‘rod-like’’) modes of the isotropic plate: (a) v=0, k=0;
(b) v=3·14, k=0; (c) v=6·28, k=0.
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Figure 6. The first three ‘‘flexural’’ modes of the isotropic plate: (a) v=0·14, k=0·766; (b) v=0·401,
k=1·4; (c) v=0·713, k=2·03.

Figure 7. The first three ‘‘radial–longitudinal’’ modes of the isotropic plate: (a) v=0·689, k=0·766;
(b) v=1·24, k=1·4; (c) v=1·75, k=2·03.
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Figure 8. The first three anstisymmetric ‘‘thickness–shear’’ modes of the isotropic plate: (a) v=1·84,
k=0·766; (b) v=2·14, k=1·4; (c) v=2·51, k=2·03.

Figure 9. The first three symmetric ‘‘thickness–shear’’ modes of the isotropic plate: (a) v=3·56, k=0·766;
(b) v=3·84, k=1·4; (c) v=4·15, k=2·03.
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Figure 10. The first three (radially varying) symmetric ‘‘thickness–stretch’’ modes of the isotropic plate:
(a) v=3·02, k=0·766; (b) v=2·93, k=1·4; (c) v=2·94, k=2·03.

2.1.  

Consideration of the unforced (F= 0) case yields the modal response in the jth layer
given by

d
 ( j) (r, z)= J(kr)S( j) (z)a( j), (2)

where

û( j) (r, z)

ŵ( j) (r, z)
d
 ( j) (r, z)0

ŝ( j)
zr (r, z)

(3)
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jŝ( j)
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is the ‘‘modal array’’ for the jth layer, with

kJ1 (kr) 0 0 0

0 J0 (kr) 0 0
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0 0 kJ1 (kr) 0

, (4)

0 0 0 J0 (kr)
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Figure 11. The first three antisymmetric ‘‘thickness–stretch’’ modes of the isotropic plate: (a) v=6·34,
k=0·766; (b) v=6·45, k=1·4; (c) v=6·62, k=2·03.

−cos (a( j)z) −sin (a( j)z) b( j) sin (b( j)z) b( j) cos (b( j)z)
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p 0Xl( j) + 2m( j)

r( j) , c( j)
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g( j) 0 b( j)2 − k2, h( j) 0 2m( j)k2b( j). (10a, b)
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In equation (3), û( j) (r, z) and ŵ( j) (r, z) respectively correspond to the radial and
transverse components of the modal displacement vector û( j) (r, z), while ŝ( j)

zr (r, z) and
ŝ( j)

zz (r, z) respectively correspond to the radial and normal components of the modal
traction vector for surfaces with normals parallel to the z-axis, tx ( j)

z (r, z) (i.e., the
corresponding modal shear stress, and modal normal stress), for the jth layer. In equation
(4), the functions J0 and J1 correspond to the zeroth order and first order Bessel functions
of the first kind, respectively, while in equation (6) the modal amplitude array for the jth
layer, a( j), contains four (as yet arbitrary) constants A( j)

i (i=1–4) for that layer. Finally,
the parameter k represents a radial wavenumber and the parameter v is a circular
frequency, both to be determined. When multiplied by a harmonic time signature with
circular frequency v, the components of the modal array satisfy the unforced equations
of motion.

The corresponding modal dilatation ox ( j) (r, z) and local modal rotation V
 ( j)
u (r, z) in the

jth layer are found as

ô( j) (r, z)=−(v/c( j)
p )2[A( j)

1 cos (a( j)z)+A( j)
2 sin (a( j)z)]J0 (kr), (zj−1 E zE zj ), (11a)

V
 ( j)
u (r, z)= (v/c( j)

s )2[A( j)
3 cos (b( j)z)+A( j)

4 sin (b( j)z)]kJ1 (kr), (zj−1 E zE zj ), (11b)

from which it is seen that a( j) is the transverse wavenumber associated with dilatation and
b( j) is the transverse wavenumber associated with shear, in the jth layer, and hence that
the corresponding terms in the modal response (the first two columns and last two
columns, respectively, of the matrix S( j)) are associated accordingly.

For perfect bonding of the layers, it is required that the displacements and tractions
associated with each interface, and hence that the modal arrays of adjacent layers, be

Figure 12. Modal participation spectrum of the impacted isotropic plate (long duration load). Degree of
shading indicates relative contribution of mode according to log10 scale of amplitude shown at right.
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Figure 13. Transient response of the isotropic plate (long duration load). ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=1, (b) 2, (c) 3, (d) 4, (e) 5, (f ) 6.

continuous across each interface. This results in distinct relations between the modal
amplitude constants of the different layers given by

a( j+ k) =T(zj , zj+ k−1)a( j), (12)
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where

T(zj , zj+ k−1)=T ( j+ k−1)T ( j+ k−2) . . . T( j) (13)

and

T ( j) 0 [S ( j+1) (zj )]−1S ( j) (zj ). (14)

We refer to T as the ‘‘influence matrix’’ and to T( j) as the ‘‘transmission matrix’’. The modal
vector and hence the response of any layer is related to the modal vector and therefore
the response of any other layer, say the first, by these matrices. There are thus only four
independent integration constants associated with each mode, regardless of the number of
layers.

2.2.   

We will consider support conditions around the perifery of the structure to be
rigid-smooth. That is, conditions are such that the radial displacement and the transverse
shear stress both vanish on the surface r=R. (It will be seen in the results sections of this
study that the local impact response of the multilayered structures under consideration is
not affected by the periferal support conditions.) Upon examination of equations (2)–(6),
it is seen that these particular support conditions are satisfied for all radial wavenumbers
k= k1, k2, . . . , which are zeroes of the equation

J1 (kr)=0. (15)

In addition to the conditions imposed at r=R, the bounding surfaces z= z0 and z= zN

are considered to be traction free. That is, it is required that the corresponding normal
and shear stresses vanish on these surfaces. (The complete set of boundary conditions
considered herein satisfy the conditions for mutual orthogonality of the normal modes for
the general class of layered solids established by Bottega [22]. The modes considered herein

Figure 14. Modal participation spectrum of the impacted isotropic plate (short duration load). Degree of
shading indicates relative contribution of mode according to log10 scale of amplitude shown at right.
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Figure 15. Transient response of the isotropic plate (short duration load). ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=1, (b) 2, (c) 3, (d) 4, (e) 5, (f ) 6.

are therefore mutually orthogonal.) Expressing the traction-free boundary conditions in
terms of the corresponding modal arrays one has

S*a(1) = 0, (16)
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Figure 16. Transient response of the isotropic plate (short duration load—finer time increments). ‘‘Freeze
frames’’ of deforming plate at sequential instants in (normalized) time: (a) t=0·2, (b) 0·4, (c) 0·6, (d) 0·8,
(e) 1·0, (f ) 1·2.
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Figure 17. Frequency spectrum for sandwich plate: case 1 (stiff face sheets).

Figure 18. Frequency spectrum for sandwich plate: case 2 (compliant face sheets).
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Figure 19. The first three ‘‘transverse–longitudinal’’ (‘‘rod-like’’) modes for case 1: (a) v=0, k=0;
(b) v=3·16, k=0; (c) v=6·39, k=0.

Figure 20. The first three ‘‘transverse–longitudinal’’ (‘‘rod-like’’) modes for case 2: (a) v=0, k=0;
(b) v=3·28, k=0; (c) v=5·75, k=0.
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Figure 21. The first three ‘‘flexural’’ modes for case 1: (a) v=0·204, k=0·766; (b) v=0·535, k=1·4;
(c) v=0·894, k=2·03.

where
S*0V(0)S(1) (z0)+V(N)S(N) (zN )T(z1, zN−1) (17)

and

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

V(0) 0
0 0 0 0

, V(N) 0
0 0 1 0

. (18)

0 0 0 0 0 0 0 1

For equation (16) to admit non-trivial solutions, the determinant of the matrix S* must
vanish, resulting in the dispersion relation

= S* == f (v, k)=0. (19)

Thus, for every value of the radial wavenumber k= kn (n=1, . . . , a) that satisfies
equation (15), there exists an associated set of frequencies v=vmn (m=1, . . . , a) that
satisfies the dispersion relation (19). These frequency–wavenumber pairs may be found
numerically for any given structure, using numerical root solving techniques. Each
resulting frequency–wavenumber pair may then be substituted into equation (16) to
determine the associated modal amplitude array a(1) = a(1)

mn . The remaining modal amplitude
arrays associated with the particular frequency–wavenumber pair may then be found using
equations (12)–(14). Thus, each of the mutually orthogonal modes d
 ( j)

mn (r, z)
(m, n=1, 2, . . . , a) is completely determined by a frequency–wavenumber pair that
satisfies equation (19).
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2.3.   

The time dependent response is expressed in array form as

u( j) (r, z, t)

w( j) (r, z, t)
d( j) (r, z, t)0

s( j)
zr (r, z, t)

, (zj−1 E zE zj ; j=1, 2, . . . , N), (20)g
G

G

F

f

h
G

G

J

js( j)
zz (r, z, t)

where d( j) (r, z, t) is the ‘‘response array’’, and u( j) (r, z, t), w( j) (r, z, t), s( j)
zr (r, z, t), and

s( j)
zz (r, z, t) are the actual (time dependent) displacement and stress components whose

physical interpretations are in direct correspondence with the analogous modal
components defined earlier.

2.3.1. Free vibration response
The time-dependent response for the unforced case is obtained by multiplying each of

the modes by its corresponding harmonic time signature and summing. Hence, the free
vibration response is given by

d( j) (r, z, t)= s
a

n=1

s
a

m=1

Amn d
 ( j)
mn (r, z) e−ivmn t, (zj−1 E zE zj ; j=1, 2, . . . , N), (21)

where Amn is the modal amplitude and i0z−1.

Figure 22. The first three ‘‘flexural’’ modes for case 2: (a) v=0·113, k=0·766; (b) v=0·334, k=1·4;
(c) v=0·608, k=2·08 .
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Figure 23. The first three radial–longitudinal modes for case 1: (a) v=0·859, k=0·766; (b) v=1·49, k=1·4;
(c) v=1·95, k=2·03.

Figure 24. The first three radial–longitudinal modes for case 2: (a) v=0·636, k=0·766; (b) v=1·15, k=1·4;
(c) v=1·64, k=2·03.
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Figure 25. The first three antisymmetric thickness–shear modes for case 1: (a) v=1·98, k=0·766;
(b) v=2·47, k=1·4; (c) v=3·0, k=2·03.

2.3.2. Transient response
The response to transient loading is found by expressing the displacement field

u( j) (r, z, t) as an expansion in terms of the mutually orthogonal modal displacement
vector, ux ( j)

mn (r, z), with time dependent amplitudes qmn (t). The corresponding transient
response d( j) (r, z, t) to the time dependent body force field F(r, z, t) is then found as an
expansion in terms of the modal arrays d
 ( j)

mn (r, z) with the time dependent amplitudes qmn (t)
as

d( j) (r, z, t)= s
a

n=1

s
a

m=1

d
 ( j)
mn (r, z)qmn (t), (zj−1 E zE zj ; j=1, 2, . . . , N), (22)

where

qmn (t)=
1

vmn g
t

0

Fmn (t) sin (vmn (t− t)) dt, (23)

Fmn (t)=2p s
N

j=1 g
zj

zj−1
g

R

0

û( j)
mn (r, z) · F(r, t)r dr dz. (24)

The solution outlined in this section, for the axisymmetric response of a finite
multilayered elastic solid, provides the basis for our analysis. The particular loading to be
considered is described next.
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3. REPRESENTATION OF IMPACT LOADING

The body force vector in equation (1) is used to simulate contact forces due to impact
loading of the multilayered plates considered. It has been shown, by Prasad et al. [12], that
the spatial variation of contact forces on the surface of a plate due to impact of a spherical
impactor may be approximated using a cosine distribution which has a maximum at the
point of impact and then tapers to zero at a distance equal to the contact radius of the
impactor. The time variation of contact forces due to impact on a plate was investigated
by Sun and Chattopadhyay [8]. Inspection of their results shows that a typical contact force
due to impact will grow from zero at the instant of impact to reach a maximum at about
half of the ‘‘impact duration’’ and then taper to zero at the end of the ‘‘impact duration’’.

For the present study, a body force is constructed to approximate contact forces due
to impact of spherical objects on a plate. The form of the body force F(r, z, t)= (Fr , Fz )
for this case is taken as

Fr (r, z, t)=0, (25a)

Fz (r, z, t)=6DJ0 (k0 r)d(z− z0) sin (v0 t),
0,

if
if

0E rE 2·405/k0

rq 2·405/k0

and
or

0E tE p/v0,
tq p/v0, 7,

(25b)

where D is the intensity of the force and d(z) is the Dirac delta function. The ‘‘impact
duration’’, t0, and ‘‘impact radius’’, r0, are characterized by the relations

t0 0 p/v0 and r0 0 2·405/k0, (26a, b)

Figure 26. The first three antisymmetric thickness–shear modes for case 2: (a) v=1·76, k=0·766;
(b) v=1·99, k=1·4; (c) v=2·28, k=2·03.
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Figure 27. The first three (radially varying) symmetric thickness–stretch modes for case 1: (a) v=3·06,
k=0·766; (b) v=3·08, k=1·4; (c) v=3·32, k=2·03.

Figure 28. The first three (radially varying) symmetric thickness–stretch modes for case 2: (a) v=2·88,
k=0·766; (b) v=2·76, k=1·4; (c) v=2·7, k=2·03.
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Figure 29. Modal participation spectrum of sandwich plate impacted by ‘‘long duration load’’: case 1 (stiff
face sheets). Degree of shading indicates relative contribution of mode according to log10 scale of amplitude shown
at right.

Figure 30. Modal participation spectrum of sandwich plate impacted by ‘‘long duration load’’: case 2
(compliant face sheets). Degree of shading indicates relative contribution of mode according to log10 scale of
amplitude shown at right.

where v0 shall be referred to as the ‘‘impact frequency’’, and k0 shall be referred to as the
‘‘impact wavenumber’’. The impact loading is thus imposed as a body force applied to a
cylindrical volume of radius r0 that is infinitesimally thin and infinitesimally close to the
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Figure 31. Transient response of case 1 subjected to ‘‘long duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=1, (b) 2, (c) 3, (d) 4, (e) 5, (f ) 6.

surface z= z0. The radial variation of this body force per unit intensity is shown in
Figure 2(a) and the corresponding time variation is shown in Figure 2(b).

The response of multilayered structures loaded by the forcing function (25a, b) will be
considered for various values of impact radius and impact duration. The forcing function
is standardized by choosing the value of D such that the forcing function imparts a unit
impulse to the structure for each case.
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Figure 32. Transient response of case 2 subjected to ‘‘long duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=1, (b) 2, (c) 3, (d) 4, (e) 5, (f ) 6.
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Figure 33. Modal participation spectrum of sandwich plate impacted by ‘‘short duration load’’: case 1 (stiff
face sheets). Degree of shading indicates relative contribution of mode according to log10 scale of amplitude shown
at right.

Figure 34. Modal participation spectrum of sandwich plate impacted by ‘‘short duration load’’: case 2
(compliant face sheets). Degree of shading indicates relative contribution of mode according to log10 scale of
amplitude shown at right.



–5.0

0.0

0.5

1.0

1.5
–4.0 –3.0 –2.0 –1.0 1.0 2.0 3.0 4.00.0 5.0

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

(a)

(b)

(c)

(d)

(e)

0.5

1.0

1.5

(f)

. .   . . 66

4. IMPLEMENTATION

In this work, the response of several structures is considered. These include single layer
plates, sandwich structures, and bilaminates with a finite adhesive layer. Results will be
in the form of frequency spectra, elastodynamic modes, and time dependent response of
the entire structure under transient load. These results are achieved as discussed below.

Fig. 35a-f
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Fig. 35g-l.

Figure 35. Transient response of case 1 subjected to ‘‘short duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=0·2, (b) 0·4, (c) 0·6, (d) 0·8, (e) 1·0, (f ) 1·2, (g) 1·4, (h) 1·6,
(i) 1·8, ( j) 2·0, (k) 2·2, (l) 2·4.
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4.1.   

In the simulations presented in the sections that follow, the parameters of the system
are normalized as follows; all length scales are normalized with respect to the total
dimensional thickness H� of the multilayer plate, mass density is normalized with respect

Fig. 36a-f.
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Fig. 36g-l.

Figure 36. Transient response of case 2 subjected to ‘‘short duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=0·2, (b) 0·4, (c) 0·6, (d) 0·8, (e) 1·0, (f ) 1·2, (g) 1·4, (h) 1·6,
(i) 1·8, ( j) 2·0, (k) 2·2, (l) 2·4.
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to the dimensional mass density r̄* of an identified reference layer, and time rates with
respect to the primary wave speed c̄* of the reference layer. Thus, letting superposed bars
denote dimensional quantities in general, and superposed bars with asterisk subscripts
denote dimensional quantities of the reference layer in particular, then the normalized
(unbarred) parameters are related to their dimensional counterparts as delineated below.
(Superscripts identifying the layer numbers are implied, where appropriate, but have been
omitted below for clarity.)

Lengths: plate dimensions H=1, R=R�/H�; co-ordinates, r= r̄/H�, z= z̄/H�;
displacements u= ū/H�, w= w̄/H�; wavenumbers, k= k�H�, a= āH�, b= b�H�. Rates: time,
t= t�c̄* /H�; frequency, v= v̄H�/c̄* ; wave speeds, cp = c̄p /c̄*, cs = c̄s /c̄*.

It is seen that t=1 corresponds to the time it takes for a transversely propagating
primary wave to travel the total thickness of an equivalent plate comprised of the material
of the reference layer. Material properties: it follows that the dimensionless mass density
and Lamé constants are related to their dimensional counterparts as mass density,
r= r̄/r̄* ; Lamé constants, l= l�/r̄* c̄2

*, m= m̄/r̄* c̄2
*.

Specific results corresponding to impact of a single layer plate are presented in section 5.
These results will form the basis for interpretation and comparison of results pertaining to
specific multilayered plates presented in sections 6 and 7. A description of the specific
structures to be considered and an outline of the analysis to be performed is discussed below.

4.2. 

The analytical model and techniques presented earlier will be used to investigate the
elastodynamic behavior of a single layer plate as a benchmark, and two specific types of
multilayer structures. The latter two types correspond to sandwich plates consisting of a
core material sandwiched between two face sheets, and to bilaminates possessing a central
‘‘adhesive’’ layer. The overall dimensions and geometries of the three types of structures
to be considered correspond directly, as shown in Figure 3. In each multilayer case, the
material properties of the face sheets or adhesive layer are varied above and below those
of the base material so as to provide a basis for comparison, with the base material
corresponding to that of the single layer plate. In both multilayer cases the base material
comprises 80% of the structure. For each of the three-layer plates under consideration the
layers are numbered sequentially from 1 to 3, as per the notation and normalization
introduced earlier, with the impacted surface being layer number one and thus the central
or core layer labeled layer number 2. For the sandwich plate, the core layer is comprised
of the reference material, while for the bilaminate with central adhesive layer, the two outer
layers are comprised of the reference material. Frequency spectra and physical depictions
of the elastodynamic modes, as well as the response to impact loads, are presented for each
case so as to provide a consistent basis for comparison. All computations are implemented
in parallel, as the problems of interest are particularly suited for parallel programming
because of the independent nature of the modes as presented in section 2. For responses
associated with time-dependent loads, the calculations are executed in parallel by
distributing the total number of precalculated modes among the available processors. Each
processor then calculates the response due to its subset of modes. The responses of the
subsets are subsequently added to give the total response of the forced system. First, the
response of the single layer plate is considered.

5. RESPONSE OF A SINGLE LAYER PLATE

A special case of the class of multilayered structures considered for this work is that
of a single layer plate. An understanding of the dynamics of a single layer plate will be
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necessary in order to discuss the response of the multilayered structures presented in
sections 6 and 7 of this study. Thus, the present section will be concerned with a
single layer cylindrical plate. In particular, we shall consider a structure with a radius
that is five times its thickness (R=5) comprised of linearly elastic material possessing
a Poisson’s ratio of n=0·3 (hence r= cp =1 and cs =0·5345, where the superscripts
have been dropped since there is only one layer). This plate will be referred to as
the isotropic plate. (It will be seen that the radius to thickness ratio of 5 is large
enough to qualify as a ‘‘thick plate’’, i.e., to show local behavior without boundary
interaction, and yet small enough to limit the number of modes necessary for computation
to a workable number.) First, the frequency spectrum for the structure in question is
presented.

5.1.     

The frequency spectrum for the isotropic plate is shown in Figure 4. In that figure, the
circles represent natural frequency–radial wavenumber pairs of the isotropic plate
found as roots of equations (15) and (19), each of which corresponds to a natural
elastodynamic mode of the plate. As may be expected, the frequency–wavenumber pairs
fall on the branches of the classical Rayleigh–Lamb frequency spectrum for circular crested
waves in a plate† (see for example reference [29] or [30]). Each branch in the
Rayleigh–Lamb spectrum corresponds to a mode of radial wave propagation in an infinite
plate. These branches have been well studied [21, 31, 32]. The lowest branch corresponds
to radially propagating flexural waves which are often approximated using thin plate
theory. The second lowest branch corresponds to radially propagating dilatational
waves which are analogous to longitudinal waves in a thin rod. The higher branches
correspond to radially propagating ‘‘thickness shear’’ and ‘‘thickness stretch’’ waves.
Each mode for the finite plate is thus seen to correspond to a standing wave comprised
of propagating wave trains traveling in opposite directions. We will therefore categorize
the natural modes into groups corresponding to the branches of the Rayleigh–Lamb
spectrum.

The modes corresponding to the frequency–wavenumber pairs along the k=0 axis in
Figure 4 are ‘‘thickness-stretch’’ modes with no radial variation, and are comprised purely
of transversely propagating dilatational waves. These modes, for which the shapes of the
first three are plotted in Figure 5, correspond directly to the longitudinal modes of a thin
rod and will be referred to as ‘‘transverse–longitudinal’’ (‘‘rod-like’’) modes. The
uppermost shape in Figure 5 is that of the rigid body mode which has a vanishing
frequency as well as a vanishing wavenumber. It is noted that there are no
‘‘thickness-shear’’ modes that are radially invariant, as such a mode would violate the
boundary conditions at r=R. Figure 6 shows the shapes of the first three ‘‘flexural’’ modes
which correspond to the lowest branch of the Rayleigh–Lamb spectrum. An important
observation of the ‘‘flexural’’ branch of the Rayleigh–Lamb spectrum is that the slope of
that branch, which gives the radial group propagation velocity, is asymptotic to the
Rayleigh surface wave speed. This suggests that for motion with high radial wavenumber,
or small radial wavelength, the transverse dimension of the plate is comparatively large
compared to the associated wavelength such that each surface of the plate acts as if it
bounds an effective half-space and thus supports surface wave motion. The shapes of the
first three ‘‘radial–longitudinal’’ modes corresponding to the second branch of the

† The Rayleigh–Lamb frequency spectrum for circular crested waves in a plate has exactly the same form as
that for straight crested waves [29].
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Figure 37. Frequency spectrum for bilaminate with central ‘‘adhesive’’ layer: case 3 (stiff central layer).

Figure 38. Frequency spectrum for bilaminate with central ‘‘adhesive’’ layer: case 4 (compliant central layer).
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Figure 39. The first three ‘‘transverse–longitudinal’’ (‘‘rod-like’’) modes for case 3: (a) v=0, k=0;
(b) v=3·69, k=0; (c) v=6·39, k=0.

Rayleigh–Lamb spectrum are plotted in Figure 7. These modes are analogous in the radial
direction to the longitudinal modes of a thin rod. The second branch of the
Rayleigh–Lamb spectrum is also asymptotic to the Rayleigh surface wave speed.
Consideration of Figure 8 shows the shapes of the first three modes corresponding to the
third branch of the Rayleigh–Lamb spectrum. The modes of this branch are characterized
by a twisting or shearing through the thickness of the plate and are thus referred to as
‘‘thickness–shear’’ modes. Thickness–shear modes may be antisymmetric (Figure 8) or
symmetric (Figure 9). Modes corresponding to the fourth branch are depicted in Figure 10.
These modes are characterized by regions of stretch and compression through the thickness
and are thus referred to as (symmetric) ‘‘thickness–stretch’’ modes. Like modes may also
be antisymmetric (Figure 11). All of the remaining branches correspond to higher order
thickness–stretch and thickness–shear modes.

5.2.  

Next, the response of the isotropic plate due to two separate impact loads is considered.
The first load, which will be denoted as the ‘‘long duration’’ load, has an impact duration
t0 =3·14 that is comparatively longer than the time it would take for a plane dilatational
wave to travel through the thickness of the plate. The second load, which will be denoted
as the ‘‘short duration’’ load, has an impact duration t0 =0·449 which is comparatively
shorter than the time it would take for a plane dilatational wave to travel through the
thickness of the plate. Both loads considered have an impact radius r0 =1·2, that is on
the order of the thickness of the plate.

The contribution of each mode to the response of the plate due to the long duration
impact load is shown in Figure 12. In that figure, circles representing the modes of the
previously presented frequency spectrum are shaded according to the base 10 logarithm
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of their corresponding modal amplitudes. Thus dark circles correspond to modes that
contribute highly to their response and light circles correspond to modes which contribute
less. It can be seen in Figure 12 that the flexural and radial longitudinal modes dominate
this response. Several of the antisymmetric thickness–shear modes also participate.

The response of the plate due to the long duration impact load is shown in Figure 13.
In this figure, the deformed geometry of the plate due to the loading is exaggerated and
plotted at sequential time points. It can be seen from Figure 13 that this load creates a
flexural disturbance in the vicinity of the impact, the neighborhood of r=0, which
propagates radially outward from the center of the plate. It is noted that the flexural wave
front reaches the point r=3 in approximately 6 time units.

The modal amplitudes due to the short duration impact load are shown in Figure 14.
In this figure, it can be seen that many of the higher frequency modes are more active in
the response to this load than they were in the previous response, as would be expected
since the ‘‘frequency’’ of the forcing is higher. Especially active are the transverse–longi-
tudinal modes and the thickness–stretch modes.

The response due to the short duration impact load is shown in Figures 15 and 16. This
response is similar to the long duration load response in that the load causes a disturbance
which propagates radially away from the area of impact and reaches the point r=3 in
approximately 6 time units. In this response, however, a compressive pulse appears which
originates at the point of impact and propagates transversely through the thickness of the
plate in approximately one time unit. The compressive pulse is then reflected from the free
bottom surface as a tensile pulse. This pulse is seen more readily in Figure 16, which
displays a sequence of smaller time steps during the first time unit. The reflection of this
compressive pulse at the free surface is pertinent to the spalling phenomenon characteristic
to impact loading of brittle materials.

Figure 40. The first three ‘‘transverse–longitudinal’’ (‘‘rod-like’’) modes for case 4: (a) v=0, k=0;
(b) v=2·1, k=0; (c) v=5·75, k=0.
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Figure 41. The first three ‘‘flexural’’ modes for case 3: (a) v=0·144, k=0·766; (b) v=0·425, k=1·4;
(c) v=0·775, k=2·03.

Figure 42. The first three ‘‘flexural’’ modes for case 4: (a) v=0·131, k=0·766; (b) v=0·349, k=1·4;
(c) v=0·597, k=2·03.
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6. RESPONSE OF SANDWICH PLATES

Sandwich structures generally consist of a thick ‘‘core layer’’ bonded, over each of its
two major bounding surfaces, to thinner ‘‘face sheets’’. In this section, the response of two
such sandwich structures which we will denote as case 1 and case 2 are considered. For
both cases the core material will be taken as the reference material and hence its properties
will be identical to those of the single layer (isotropic) plate considered in the previous
section, providing a basis for comparison. The differences between these cases and the case
of the isotropic plate are in the properties of the face sheets, each of which is one-tenth
of the thickness of the overall structure. The configuration of the sandwich plates under
consideration may be seen in Figure 3(b). The plate corresponding to case 1 is comprised
of identical face sheets which are stiffer than the core layer (having four times higher elastic
modulus), while the structure corresponding to case 2 possesses identical face sheets which
are more compliant than the core layer (having four times lower modulus). We thus
consider structures such that c(2)

p =1, c(2)
s =0·5345 and r(1) = r(2) = r(3) = 1 for both case

1 and case 2, while for case 1: c(1)
p = c(3)

p =2·0, c(1)
s = c(3)

s =1·069; and for case 2:
c(1)

p = c(3)
p =0·5, c(1)

s = c(3)
s =0·26725.

6.1.     

The frequency spectrum corresponding to case 1 is shown in Figure 17 and that
corresponding to case 2 is shown in Figure 18. Comparison of these figures with the
frequency spectrum for the isotropic plate (Figure 4) shows that all of the branches for
case 1 are higher in frequency than the corresponding branches of the isotropic (single
layer) plate, and that the branches for case 2 are lower in frequency than those of the
isotropic plate. This may be expected since 20% of the material for case 1 has a higher
elastic modulus than the isotropic plate and 20% of the material for case 2 has a lower

Figure 43. The first three radial–longitudinal modes for case 3: (a) v=0·868, k=0·766; (b) v=1·56, k=1·4;
(c) v=2·18, k=2·03.
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Figure 44. The first three radial–longitudinal modes for case 4: (a) v=0·633, k=0·766; (b) v=1·12, k=1·4;
(c) v=1·49, k=2·03.

Figure 45. The first three antisymmetric thickness–shear modes for case 3: (a) v=2·12, k=0·766;
(b) v=2·41, k=1·4; (c) v=2·76, k=2·03.
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elastic modulus than the isotropic plate. It can be seen for both cases 1 and 2 that the lowest
two branches of the frequency spectrum which, as discussed earlier, correspond to flexural
and radial longitudinal modes, deviate from those for the isotropic case monotonically as
the radial wavenumber increases. This may be explained by considering that both of these
branches are asymptotic to the Rayleigh surface wave speed as the radial wavenumber
increases. Thus the surface motion of these modes increases with radial wavenumber and
the face sheets have a greater effect on the frequency of the elastodynamic mode. (The
opposite trend may be expected for the case of bilaminate plates with a central adhesive
layer considered in section 7.)

Several of the elastodynamic modes corresponding to both cases 1 and 2 are displayed
in Figures 19–28. Upon consideration of these figures, small differences between cases 1
and 2 may be observed within the face sheets or near the interfaces, for the
transverse–longitudinal modes (Figures 19 and 20), while no pronounced differences
between cases 1 and 2 are observed for the flexural modes (Figures 21 and 22). Upon
comparing the radial–longitudinal modes of case 1 which are shown in Figure 23 with those
of case 2 which are shown in Figure 24, the biggest difference that can be seen is that
deformed transverse surfaces (surfaces whose normals were originally in the radial
direction) in Figure 23 are curved away from the vertical, while those in Figure 24 are not.
The corresponding modes for the isotropic plate possess transverse surfaces which are
curved less after deformation than those for case 1 but more than those for case 2, as can
be verified by consideration of Figure 7. An explanation for this is rooted in the
characteristic that these modes consist primarily of radial motion. For case 1, the radial
motion of the core material is resisted by the stiff face sheets and thus the motion is greater
in the center than near the bounding surface, thus the transverse surfaces are curved more
than those for the isotropic plate. For case 2, the compliant face sheets allow increased

Figure 46. The first three antisymmetric thickness–shear modes for case 4: (a) v=1·32, k=0·766;
(b) v=1·68, k=1·4; (c) v=2·1, k=2·03.
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Figure 47. The first three (radially varying) symmetric thickness–stretch modes for case 3: (a) v=3·37,
k=0·766; (b) v=3·35, k=1·4; (c) v=3·37, k=2·03.

radial motion of the bounding surface so that it moves with the core and hence the
curvature of the transverse surfaces is reduced. Next, compare the thickness stretch modes
shown for case 1 in Figure 27 and for case 2 in Figure 28. In these figures, the opposite
trend is seen because the motion is primarily transverse. The stiff face sheets of case 1 resist
bending due to the transverse motion and thus reduce the curvature of transverse surfaces,
while the compliant face sheets of case 2 bend with the transverse motion and thus increase
the curvature of transverse surfaces. These effects help to clarify the differences between
the radial–longitudinal modes and the thickness–stretch modes which have similar looking
shapes. That is, radial–longitudinal modes consist primarily of radial motion while
thickness–stretch modes consist primarily of transverse motion.

If the thickness–shear modes for case 1 shown in Figure 25 are compared with those
of case 2 shown in Figure 26, it can be seen that the compliant face sheets of case 2 are
deformed more than the stiff face sheets of case 1. Conversely, the core is deformed more
for case 1 than for case 2 near the interfaces between the face sheets and the core. [This
suggests that excitation of these modes for the sandwich with stiff face sheets (case 1) could
lead to debonding of the layer interfaces.] In a manner similar to those of the previous
discussion, the shear motion of the core is resisted by the stiff face sheets for case 1, causing
curvature of transverse surfaces, while the compliant face sheets of case 2 move with the
shear motion of the core thus reducing the curvature of transverse surfaces.

6.2.  

Next, the responses of the sandwich structures of cases 1 and 2 to the same impact loads
considered for the isotropic plate are examined. Recall that for each load, the forcing
function is scaled so that the total imparted impulse is the same. The impact load is
characterized by its (non-dimensional) ‘‘impact duration’’ time t0 (or equivalently the
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Figure 48. The first three (radially varying) symmetric thickness–stretch modes for case 4: (a) v=2·07,
k=0·766; (b) v=2·06, k=1·4; (c) v=2·17, k=2·03.

Figure 49. Modal participation spectrum of bilaminate with central ‘‘adhesive’’ layer impacted by ‘‘long
duration load’’: case 3 (stiff central layer). Degree of shading indicates relative contribution of mode according
to log10 scale of amplitude shown at right.

‘‘impact frequency’’ v0 = p/t0) and the ‘‘impact radius’’ r0 (or equivalently the ‘‘impact
wavenumber’’ k0 =2·405/r0). Two impact durations are considered, the ‘‘long duration’’
(t0 =3·14) and the ‘‘short duration’’ (t0 =0·449), both for an impact radius of r0 =1·2.
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Figure 50. Modal participation spectrum of bilaminate with central ‘‘adhesive’’ layer impacted by ‘‘long
duration load’’: case 4 (compliant central layer). Degree of shading indicates relative contribution of mode
according to log10 scale of amplitude shown at right.

Before proceeding, it is pointed out to the reader that in the corresponding figures the
response is shown by exaggerated plots of the deformed geometry. For these plots, a
consistent scale of deformation was chosen so that the responses can be compared and
also so that the range of behavior can be easily observed. A consequence of this scale is
that large displacement gradients may cause the lines of the plots to overlap. It is
emphasized that this does not correspond to any kind of material failure or discontinuity
but is simply a result of the exaggerated scale of the deformed geometry.

The modal amplitudes of the response of the structure corresponding to case 1 to the
long duration impact load are shown in Figure 29 and those for case 2 are shown in
Figure 30. In these figures, it can be seen that the majority of the modal amplitudes are
greater for case 2. This is expected since case 2 is more compliant than case 1 and thus
will respond to the same load with larger displacements. Figures 31 and 32 show the
responses, of cases 1 and 2, respectively, to this load. Upon consideration of these figures,
the only significant difference seen between these responses is that the resulting
displacement, when compared with the corresponding results for the isotropic plate, is
larger for case 2 and smaller for case 1 as might be expected.

The modal amplitudes for the ‘‘short duration load’’ are shown in Figures 33 and 34.
Although most of the modal amplitudes are greater for case 2, as seen previously, it is
noted that the transverse–longitudinal modes, particularly those corresponding to the
thickness–stretch modes, participate more for case 2 than for case 1. The response of case
1 to this load is shown in Figure 35. Similarly, the response of case 2 is shown in Figure 36.
The first observation that may be made upon consideration of these figures is that the
displacements of the face sheets are significantly larger for case 2 than for case 1. This is
expected since the face sheets of case 1 are stiffer than those of case 2. It can also be
observed, however, that the transversely propagating stress pulse which is initiated in the
top face sheet induces significantly larger stresses (deformation) for case 2 even after it has
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propagated into the core layer, which is the same for both cases. This result may have been
anticipated due to the higher degree of participation, for case 2, of the thickness–stretch
modes which correspond to transverse dilatational motion. This difference between the
responses of case 1 and case 2 suggests that the stiff face sheets tend to protect the softer
core from impact as may be expected. What is perhaps more interesting, however, is that

Figure 51. Transient response of case 3 subjected to ‘‘long duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=1, (b) 2, (c) 3, (d) 4, (e) 5, (f ) 6.
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Figure 52. Transient response of case 4 subjected to ‘‘long duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=1, (b) 2, (c) 3, (d) 4, (e) 5, (f ) 6.

the compliant face sheet exposes the core to higher stresses due to transverserly
propagating pulses than would be experienced by an isotropic plate without any face sheet
at all. This result can be verified by comparing Figure 36 with Figure 16.

From the results presented in this section, it can be seen that the sandwich structures
considered behave very much like the isotropic plate in response to the ‘‘long duration
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loads’’. The main effect of the face sheets was to increase or decrease the total stiffness
of the plate and thus reduce or increase the overall displacements accordingly. The
character of the response was not seen to be significantly affected by the face sheets. For
the ‘‘short duration loads’’, however, the face sheets were observed to have a much greater
effect on the form of the response. Compliant face sheets were seen to expose the structure
to higher compressive stresses at the interface between the top face sheet and the core.
These stresses may be transmitted through the core and reflected as tensile pulses at the
opposite interface. Such tensile reflection could promote interfacial damage such as layer
debonding at the interface of the core and the face sheet opposite the impact surface. The
stiff face sheets, on the other hand, tended to protect the core from the transversely
propagating pulses due to the impact.

7. RESPONSE OF BILAMINATES WITH A CENTRAL ‘‘ADHESIVE’’ LAYER

In this section, the response of bilaminate structures with a central layer simulating, for
example, the situation of an adhesive layer, is considered. Two such structures, denoted
as case 3 and case 4, are examined, each of which has two identical outer layers and a
thinner layer in between them as represented in Figure 3(c). The material of the outer layers
will be considered as the base or reference material and hence will be identical to the
material of the isotropic plate examined in section 5 or the core material of the sandwich
plates considered in section 6. The thickness of the ‘‘adhesive’’ layer is chosen to be
two-tenths of the total thickness of the plate, hence these cases are of the same general
‘‘make up’’ as cases 1 and 2 but configured differently. Specifically, structures are
considered where the layers are characterized by the non-dimensional properties given by
c(1)

p = c(3)
p =1, c(1)

s = c(3)
s =0·5345 and r(1) = r(2) = r(3) = 1 for both cases 3 and 4, with the

Figure 53. Modal participation spectrum of bilaminate with central ‘‘adhesive’’ layer impacted by ‘‘short
duration load’’: case 3 (stiff central layer). Degree of shading indicates relative contribution of mode according
to log10 scale of amplitude shown at right.
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Figure 54. Modal participation spectrum of bilaminate with central ‘‘adhesive’’ layer impacted by ‘‘short
duration load’’: case 4 (compliant central layer). Degree of shading indicates relative contribution of mode
according to log10 scale of amplitude shown at right.

normalized wave speeds in the central layer distinguished for each case as: case 3: c(2)
p =2·0,

c(2)
s =1·069; case 4: c(2)

p =0·5, c(2)
s =0·26725.

7.1.     

The frequency spectrum corresponding to case 3 is shown in Figure 37 while that
corresponding to case 4 is shown in Figure 38. As may be anticipated from the behavior
observed for the sandwich plates discussed in the previous section, the frequencies for case
3, where the adhesive layer is relatively stiff compared to the ‘‘adherends’’, are generally
higher than the corresponding frequencies for the isotropic plate which are generally higher
than those for the structure corresponding to case 4. For case 4, it is noted that the fourth
branch, which corresponds to symmetric thickness–stretch modes, has much lower
associated frequencies than it has had in any of the previous cases. It is curious that the
other higher order thickness–stretch branches have not been lowered in frequency as much
as the fourth branch. As anticipated at the end of the previous section, the frequencies
associated with the lowest two branches of case 3 are asymptotic to those of the isotropic
plate for large radial wavenumbers, a reason being that these modes consist largely of
surface motion as discussed earlier. The lowest branches of case 4, however, are not
asymptotic to the isotropic case within the range of radial wavenumbers considered. This
may generally be attributed to the effective decoupling of the motion of the two adherends
for this case as may be seen upon examination of the corresponding figures. The structures
are thus effectively thinner in this sense and hence the surface motion becomes apparent
for shorter wavelengths and hence higher wavenumbers than for the other cases
considered. Next, several of the corresponding elastodynamic mode shapes are examined
more closely.

The elastodynamic modes corresponding to cases 3 and 4 are plotted in Figures 39–48.
Figure 43 shows the radial longitudinal modes for case 3. These modes are very similar
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to those for the isotropic case and, as stated previously, the corresponding frequencies are
asymptotic to the Rayleigh surface wave speed in the outer layer because most of the
motion of these modes is at the surface for large wavenumbers. The radial longitudinal
modes for case 4 are shown in Figure 44. These modes are somewhat different than the
corresponding modes for the isotropic case. Because the inner layer is compliant, a large
portion of the deformation corresponding to these modes occurs in the inner layer and

Fig. 55a-f.
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Fig. 55g-l.

Figure 55. Transient response of case 3 subjected to ‘‘short duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=0·2, (b) 0·4, (c) 0·6, (d) 0·8, (e) 1·0, (f ) 1·2, (g) 1·4, (h) 1·6,
(i) 1·8, ( j) 2·0, (k) 2·2, (l) 2·4.

thus the material properties of the inner layer contribute more to the frequencies of these
modes. Thus, the corresponding frequencies are not asymptotic to the Rayleigh surface
wave speed in the outer layer, at least for the range of wavenumbers considered. The
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thickness–shear modes are shown in Figures 45 and 46 for cases 3 and 4, respectively. Like
the radial–longitudinal modes, the thickness–shear modes for case 3 appear similar to those
of the isotropic plate while those for case 4 have greater deformation in the compliant inner
layer.

Figures 47 and 48 depict the first three thickness stretch modes for cases 3 and 4,
respectively. Again, the modes for case 3 appear to be similar to those for the isotropic

Fig. 56a-f.
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Fig. 56g-l.

Figure 56. Transient response of case 4 subjected to ‘‘short duration load’’. ‘‘Freeze frames’’ of deforming plate
at sequential instants in (normalized) time: (a) t=0·2, (b) 0·4, (c) 0·6, (d) 0·8, (e) 1·0, (f) 1·2, (g) 1·4, (h) 1·6,
(i) 1·8, ( j) 2·0, (k) 2·2, (l) 2·4.

plate while those for case 4 appear to differ. The symmetric thickness stretch modes for
case 4 are interesting in that the outer layers each individually take on the shape of the
flexural modes for the isotropic plate, while the inner layer keeps the form of the thickness
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stretch modes. The outer layers of these modes appear to stretch very little if at all in the
transverse direction. This combination of modes makes sense if the isotropic plate modes
are considered for each layer separately. The reduced stiffness of the inner layer will lower
the frequencies of the thickness stretch modes for that layer so that they tend to match
the lower frequencies of the flexural modes in the outer layers. Referring back to Figure 27,
it can be seen that a similar mode shape occurs for the sandwich plate with stiff face sheets.
In that figure, the face sheets take on the form of the flexural modes and bend around
the thickness stretch modes of the less stiff inner layer. This suggests an explanation for
the significant reduction in frequency of the symmetric thickness stretch modes (fourth
branch). For these modes, a large percentage of the corresponding deformation is seen to
occur in the middle layer which has reduced stiffness. The material properties of this layer
dominate the resulting motion and therefore the frequencies associated with these modes
are reduced more than those of the other modes. In light of the low frequencies of the
symmetric thickness stretch modes for case 4, we will expect strong participation of these
modes in the responses of case 4 to impact loading. Next, the responses are examined of
bilaminates with central adhesive layers (cases 3 and 4) to the same impact loads as
considered for the sandwich plates in the previous section, and for the isotropic plates in
section 5.

7.2.  

The modal amplitudes associated with the response of case 3 to the ‘‘long duration’’
impact load are shown in Figure 49 while those for case 4 are shown in Figure 50. As for
the sandwich structures, the modal amplitudes are lower for the case with added stiffness
(case 3). The symmetric thickness stretch modes (fourth branch) appear to contribute
significantly more for case 4 than for case 3 or for the isotropic plate (Figure 12). Figures 51
and 52 display the responses of the structures corresponding to cases 3 and 4, respectively,
to this load. The response for case 3 appears to be similar to that for the isotropic plate
with a somewhat smaller displacement due to the added stiffness of the thin middle layer.
In the response for case 4, however, the outer layers can be seen to separate slightly due
to transverse stretch of the compliant middle layer. This may be attributed to the excitation
of the symmetric thickness stretch modes mentioned previously.

The modal amplitudes for the short duration impact load are shown in Figures 53 and
54 for cases 3 and 4, respectively. For both cases, participation of the thickness stretch
modes is seen but the modes corresponding to the fourth branch participate significantly
more than the others for case 4. The impact response of case 3 is shown in Figure 55 and
the response of case 4 is shown in Figure 56. For case 3, an increase in the stress
(deformation) of the transversely propagating compressive pulse can be seen when
comparing Figure 55 with Figure 16 which corresponds to the same load for the isotropic
plate (compare t=0·6). This increase is due to the overlap of the compressive pulse with
its compressive reflection from the stiff central layer. This effect may be thought of as a
pinching of the outer layer between the impact load and the stiff central layer. In the
response of case 4, the familiar transversely propagating stress pulse travels through the
thickness of the plate and is reflected from the opposite surface. In this case, however, the
reflected tensile pulse does not appear to be transmitted through the compliant inner layer,
but is instead reflected back again into the lower layer in compression. The vibrational
energy appears to remain trapped in the bottom layer causing it to stretch and contract
repeatedly until the energy disperses radially via the flexural wave.

It was seen in this section that the bilaminate with a stiff ‘‘adhesive’’ layer (case 3)
behaves very much like the isotropic plate when subjected to the ‘‘long duration’’ impact
load. This may be attributed to the observation that the responses to this load are
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dominated by the flexural modes, which consist mainly of surface motion, and thus are
not significantly altered by the presence of a stiff thin central layer. In the response of case
3 to the short duration impact load, a ‘‘pinching’’ of the impacted outer layer was observed.
It would appear that this phenomenon would tend to promote internal damage at the layer
interface. The responses of the bilaminate with a compliant ‘‘adhesive’’ layer (case 4) were
seen to be strongly influenced by the symmetric thickness stretch modes (fourth branch)
which allow the outer layers to separate from each other and flex almost independently.
This independent flexing may lead to internal damage such as layer debonding as well as
core crushing.

8. CONCLUDING REMARKS

The foundations for the analysis of the transient axisymmetric response of thick layered
plates have been outlined, and a mathematical representation of an impact load has been
presented. The analysis, based on an exact elasticity solution, was seen to lend itself well
to parallel computation, and subsequent computations were implemented accordingly. A
benchmark study with regard to a single layer plate was presented, followed by parallel
studies for two types of layered plates, sandwich plates and bilaminates with a central
‘‘adhesive’’ layer. In each case, frequency spectra and elastodynamic modes were discussed
and compared. Further, the response to both ‘‘short duration’’ and ‘‘long duration’’ impact
loads was examined, with the results presented in the form of ‘‘freeze frames’’ of the
deforming structure at various time increments revealing important local behavior.

The response of the isotropic plate to impact loading was seen to be sensitive to the
impact duration. It was observed that after impact occurred, the energy imparted to
the plate was dispersed radially by flexural waves. When the ‘‘frequency’’ of the impact
was small compared with the frequency of the flexural modes (long duration of impact),
the energy was seen to be dispersed as it was imparted and hence the local stresses in the
vicinity of impact were of the order of the stresses at the radially propagating flexural wave
front. When the ‘‘frequency’’ of impact was large compared with the frequency of the
flexural modes (short duration of impact), then the imparted energy was not dispersed by
the flexural waves, but instead was seen to build up in the region local to the impact. This
energy was seen to be channeled to the higher frequency thickness–stretch and
thickness–shear modes resulting in transversely propagating pulses and hence high stress
levels in the region local to the impact. Since these local stresses are much higher than those
associated with the flexural wave front, the present results suggest that thin plate theories
which do not include transverse (thickness) effects are not adequate for the prediction of
damage due to short duration impact loading.

The responses of the several laminate structures examined support the notion that
transverse wave propagation is a dominant mechanism for initiating internal damage in
layered structures as a result of impact. It was seen that transversely propagating
compressive pulses were initiated in the first layer by the impact, and that these pulses
travel transversely while dispersing radially. If the compressive pulse reaches an interface
between layers before dispersing, then it will reflect and refract. A stiff embedded layer was
seen to cause the compressive pulse to reflect in compression and overlap with itself near
the layer interface. Such behavior would encourage damage at the layer interface due to
large compressive stress. The refracted pulse was observed to continue on in compression.
When an embedded compliant layer was reached, the compression pulse was seen to reflect
in tension. The reflected tensile pulse tended to pull the layers apart and hence would
encourage debonding. When a thin compliant layer was situated in between two stiffer
layers, a compressive pulse was seen to be transmitted into the soft layer and to become
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trapped there, repeatedly reflecting in compression between the two stiff layers until the
vibrational energy was dispersed radially by flexural waves or refracted into the stiff layers.
This situation would cause the compliant inner layer to stretch and contract while the stiff
outer layers flex against each other. This kind of resonance would also tend to pull the
layers apart, and hence encourage debonding. Thus, it was seen that the internal damage
that has been observed in laminates impacted by masses (see for example reference [28])
may be attributed to transverse wave propagation. It is apparent that this phenomenon
cannot be properly understood by studying plate theories or models of laminate response
that do not include transverse wave propagation. (Parallel studies were also conducted for
an impactor with a smaller radius of r0 =0·345 for each of the structures considered herein
and revealed the same general behavior [25]. The specific results corresponding to this
smaller impact radius have therefore been excluded for brevity.)
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